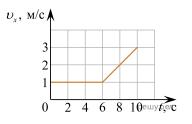
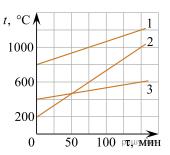

Централизованный экзамен по физике, 2023

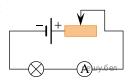

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

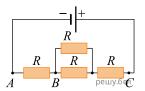
- 1. Из перечисленного ниже измерительными приборами являются:
 - 1) плотность; 2) секундомер; 3) ускорение; 4) весы; 5) кристаллизация.
- **2.** График зависимости модуля скорости υ тела от времени t изображён на рисунке. Путь s, пройденный телом за промежуток времени $\Delta t = 3.0$ с, равен:



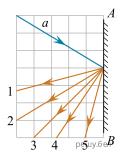
- 1) 10 m; 2) 20 m; 3) 60 m;
- 4) 120 м;
- 5) 140 м.
- **3.** Тело движется вдоль оси Ox. График зависимости проекции скорости v_x тела от времени t изображён на рисунке. Если масса тела m=0,4 кг, то в момент времени t=8 с модуль результирующей сил F, действующих на тело, равен:


- 1) 0,2 H;
- 2) 0,4 H;
- 3) 0,5 H;
- 4) 0,6 H;
- 5) 0,8 H.
- 4. Единицей давления газа в СИ является:
- 1) джоуль;
- 2) моль;
- 3) паскаль;
- 4) кельвин;
- 5) ватт.

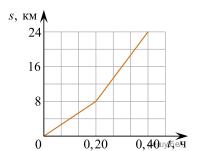
5. На рисунке изображён график зависимости температуры t от времени τ для трёх тел (1, 2 и 3) одинаковой массы, помещённых в печь. Если каждому из тел ежесекундно сообщалось одно и то же количество теплоты, то для удельных теплоёмкостей веществ c_1 , c_2 и c_3 этих тел выполняется соотношение:



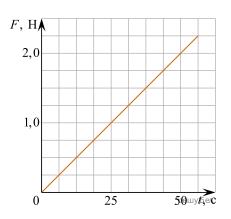
1) $c_1 < c_2 < c_3$ 2) $c_1 < c_2 = c_3$ 3) $c_3 < c_1 < c_2$ 4) $c_2 < c_1 < c_3$ 5) $c_3 < c_2 < c_1$


6. На рисунке изображена схема электрической цепи. Из перечисленного ниже выберите элементы, присутствующие в электрической цепи:

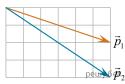
- 1) амперметр;
- 2) вольтметр; 5) источник тока.
- 3) реостат;
- 4) конденсатор;
- 7. Электрическая цепь состоит из источника тока и четырёх одинаковых резисторов сопротивлением R каждый (см. рис.). Если между точками A и C напряжение $U_{AC} = 15$ В, то напряжение U_{BC} между точками B и C равно:


- 1) 5,0 B;
- 2) 6,0 B;
- 3) 7,0 B;
- 4) 9,0 B;
- 5) 10 B.
- 8. Световой луч а падает на поверхность зеркала АВ. Отражённый от зеркала световой луч обозначен на рисунке цифрой:

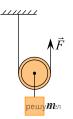
- 1) 1;
- 3) 3;
- 4) 4;
- 5) 5.
- 9. Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения с длиной волны $\lambda = 1,22 \cdot 10^{-7} \,$ м, то модуль разности энергий $|\Delta E|$ атома водорода в этих стационарных состояниях равен:
 - 1) 13,6 ₉B;
- 2) 10,2 ₃B; 5) 3,40 oB.
- 3) 8,10 ₃B;
- 4) 4,60 9B;
- **10.** Количество электронов в электронейтральном атоме фтора ${}_{9}^{19}$ F равно:
 - 1) 28;
- 2) 19;

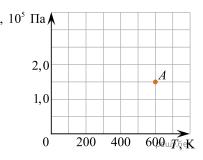

2) 2;

- 3) 18;
- 4) 10;
- 5) 9.
- 11. На рисунке представлен график зависимости пути s от времени t движения автобуса на двух различных участках дороги. Средняя скорость и движения автобуса на всём пути равна ... $\frac{\text{KM}}{\text{Ч}}$

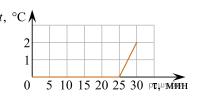


12. Из городов A и B, расстояние между которыми $l_0 = 30$ км, одновременно выезжают навстречу друг другу два автомобиля и движутся по прямолинейному участку шоссе с постоянными скоростями. Если модуль скорости первого автомобиля $\upsilon_1=85~{{\rm KM}\over {\rm q}},$ а модуль скорости второго автомобиля $\upsilon_2=65~{{\rm KM}\over {\rm q}},$ то до встречи со вторым автомобилем первый автомобиль пройдет расстояние l_1 , равное ... км.

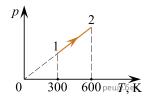

- 13. Материальная точка массой m=2,0 кг движется вдоль оси Ox. Если кинематический закон движения материальной точки имеет вид $x(t)=A+Bt+Ct^2$, где A=2,0 м, B=1,0 $\frac{\mathrm{M}}{\mathrm{c}}$, C=1,0 $\frac{\mathrm{M}}{\mathrm{c}^2}$, то кинетическая энергия E_{K} материальной точки в момент времени t=3,0 с равна ... Дж.
- 14. Тело массой m=560 г двигалось по гладкой поверхности со скоростью $\upsilon_0=2,0$ $\frac{\rm M}{\rm c}$. В момент времени $t_0=0$ с на тело в направлении его движения начинает действовать сила \vec{F} , модуль которой линейно зависит от времени (см. рис.). Скорость тела достигнет значения $\upsilon=30$ $\frac{\rm M}{\rm c}$ в момент времени t, равный ... с.


15. Камень бросили горизонтально. В момент времени $t_1=1,0$ с импульс камня был \vec{p}_1 , а в момент времени $t_2=2,0$ с импульс камня стал \vec{p}_2 (см. рис.). В момент броска ($t_0=0$ с) модуль начальной скорости υ_0 камня был равен ... $\frac{\rm M}{c}$.

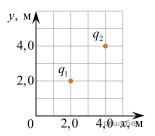
- **16.** Вокруг планеты по круговым орбитам движутся два спутника. Радиус орбиты первого спутника в k=1,44 раза больше радиуса орбиты второго спутника. Если период обращения первого спутника $T_1=36,4$ суток, то период обращения T_2 второго спутника равен ... суток (сутки).
- 17. Груз массой m=9,0 кг равномерно поднимают с помощью подвижного блока (см. рис.). Если коэффициент полезного действия блока $\eta=75\%$, то модуль силы F, приложенной к свободному концу верёвки, равен ... Н.



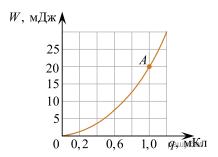
18. В pT-координатах точкой A отмечено состояние идеального p, 10^5 Па p газа, количество вещества которого p = 1,0 моль. Объём p газа в этом состоянии равен ... л. 2,0


- **19.** Вечером при температуре воздуха $t_1=11,0\,^{\circ}\mathrm{C}$ относительная влажность воздуха была $\phi=60\%$. Ночью температура понизилась до $t_2=2,0\,^{\circ}\mathrm{C}$. Если плотность насыщенного водяного пара при температурах t_1 и t_2 равна соответственно $\rho_{\mathrm{H}1}=10,0\,\frac{\Gamma}{\mathrm{M}^3}$ и $\rho_{\mathrm{H}2}=5,6\,\frac{\Gamma}{\mathrm{M}^3}$, то из воздуха объемом $V=40\,\mathrm{M}^3$ выпала роса массой m, равной ... Γ .
- **20.** Если в тепловом двигателе газ совершил за один цикл работу в n=6,1 раза меньше количества теплоты, отданного холодильнику, то термический коэффициент полезного действия η теплового двигателя равен ... %.

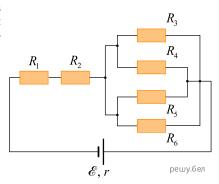
21. В открытом сосуде находится смесь воды и льда (удельная t, °С теплоёмкость воды $c=4200~\frac{Дж}{\text{кг}\cdot\text{°C}},$ удельная теплота плавления льда $\lambda=3,4\cdot10^5~\frac{Дж}{\text{кг}}).$ Масса воды в смеси $m_{\text{в}}=350$ г. Сосуд внесли в



тёплую комнату и сразу же начали измерять температуру содержимого сосуда. График зависимости температуры t смеси от времени τ изображён на рисунке. Если количество теплоты, ежесекундно передаваемое смеси, постоянно, то масса m_{π} льда в смеси в начальный момент времени была равна ... г.


22. Идеальный одноатомный газ перевели из состояния 1 в состояние 2 (см. рис.). Если количество вещества газа $\nu=3,2$ моль, то газ получил количество теплоты Q, равное ... кДж.

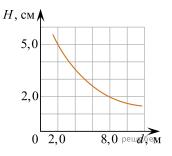
23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1=24$ нКл и $q_2=-32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат равен ... $\frac{\mathrm{B}}{\mathrm{M}}$.



24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

- **25.** Если за время $\Delta t=30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W=31,7$ кВт \cdot ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27. На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов



$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm JI}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .
- **30.** График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

